
AD/A-000 655

FNFIT: AN EAST-TO-USE, ARBITRARY
FUNCTION-TO-DATA FITTING ROUTINE
(A USER'S MANUAL)

J. Terrence Klopcic

Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland

August 1974

DISTRIBUTED BY:

National Technical Informtio Servkce

U. S. DEPARTMENT OF COMMERCE

'-_

Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating
or sponsoring activity is prohibited.

Additional copies of this report may be obtainel
from the National Technical Information Service,
U.S. Department of Comerce, Springfield, Virginia

÷ 22151.

l~~il't O~r___ ______

O;.- ;f ,;'.ltn

The finding3 in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

UNCLASSIFIED htliqastr.o
SECURITY CLASSIFCATION OF THIS PAGE (W". De fee.*j 00 66S

REPORT I)(CUMENTAT|ON PAGE DEFu3 OMPLRuh"o P-wBOREA DiOmmPIT•FORM

REPORT NUMBER a. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

BRL MEMORANDUM RE-PORT NO. 2402

4. TITLE (nd Subtmlie) S. TYPE OF REPORT & PERIOD COVERED

FNFIT: AN EASY-TO-USE, ARBITRARY FUNCTION-TO- Final

DATA FITTING ROUTINE (A USER' S MANUAL) 6. PERFORMING ORG. REPORT NUMBER

Z 7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(*)

J. Terrence Klepcic

9. PERFORMING ORGANIZATION NAME AND ADDRESb ,0. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

USA Ballistic Research Laboratories
Aberdeen Proving Cround, Maryland 21005 RDThE 1W062117ADS1

S1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U.S. Army Materiel Command AUGUST 1974

5001 Eisenhower Avenue ,3. NUMBEROF PAGES SAlexandria. VirGinia 22.fl4 46
S14. MONITORING AGENCY-NAME & ADRESS(I! different from Controlling Office) IS. SECURITY CLASS. (of thsl report)

UNCLASSIFIED
IS&. DECL ASSI FICATION/DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIOI.TION STATF.MENT (of the abstract entered in Block 20. it different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revet.. oid. If necoeeway and Identity by block number)

Function Fitting
Least Squares Analysis
Lbata Fitting " .,.....

20 ABSTRACT (Continme an lveroev ide if neceor ,ad Identify by block number)

The program FNFIT uses both steepest gradient, and chi-square minimization
searches -.i fit a user-chosen, arbitrary (including nonlinear) function to a
set of ýanp. data points. Options are included to allow control of the search
for particularly pathological functions, making the program quite versatile.
However, the program can also be run without the options, providing an easy-
to-learn-and-use tool for the pedestrian.

DO I F 1473 EDITION OF I NOV SB IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (fWhe Da Enteae1)

TABLE OF CONTENTS

Page

I. INTRODUCHION S

II. PROGRAM INPUT 6

A. Blank Format 6

B. Program Operation 7

III. HOW FNFIT WORKS11

IV. GENERAL CAUTIONS 18

V. A FITTING EXAMPLE 19

VI. REFERENCES 22

APPENDIX A. Program Listing 23

APPENDIX B. Example Input............. 39

GLGSSARY OF TERMS 43

DISTRIBUTION LIST 45

3

3 Precr1ing page blank

I. INTRODUCTION

A most common technique in data analysis involves fitting a function,
the form of which is dictated by theoretical considerations, to experimental

data. The parameters of the function, which are adjusted to provide the

best fit to the data, are related to the physical quantities which the

experiment sought to measure; hence, the values of these parameters

become the desired results of the experiment. In particular, most of the

experiments conducted at this Laboratory, including recent work on energy

and rate dependence of solid state x-ray dosimetersi response of

ferroelectric dosimeters, yield outputs which vary with changes in

experimental conditions. By a theoretical aialysis of the mechanisms

involved in the interaction of radiation with these dosimeters, their

expected responses have been described as functions of the experimental

conditions. From the parameters of these functions, the energy, dose

and rate dependence, time dependence, electrical characteristics,

have been determined. In some cases the failure of the expected

function to satisfactorily fit the data has resulted in the discovery

of other mechanisms involved in the response, and in the subsequent

generation of a more complete functional description.

Becaus, of the broad application of this kind of analysis, data

fitting routines are commonplace; most, however, involve fitting a

particular functional form, such as a power series or Fourier series.

For experiments whose functional behaviour is not such a series, the

subsequent extraction of the desired quantities may be very difficult.

FNFIT is designed to allow the analyst to input his own functional

form, and reap those parameters which are directly applicable to the

experiment. The program was intended to be quick and easy-to-use for

the analyst who has only occasional need to fit a simple function,

yet versatile enough Lo handle cor.plicated fu-"ions, and functions which

change erratically wi:h small "hanges in .,aramoters. The user supplied

fuiction, G (x; A(l), A(2)...) can contain up to 20 parameters, A(J), and

up to 1000 data points, [X(I), Y(I)], can be input.

Preceding page blank

Five or six sets (the sixth being optional) of cards are read in to

run the program. These sets input the following:

EXEC A. The function, G.

EXEC B. Assemble and execute instructions

SET A. Control information

SET B. Starting values for the parameters

SET C. Limits on the parameters (Optional)

SET D. The Data

These card sets are described, along with some "convenience" options,

are noted in the following section, ("PROGRAM INPUT").

The program, at the end of the run, outputs the parameters, the

data points and function value at each point, and the derivative of the

function at each point. Various outputs are available at the beginning

of each iteration.

II. PROGRAM INPUT

A. Blank (Free-Field) Format

Since FNFIT makes use of the BLANK FORMAT feature of the 1108,

a note of description is in order. In BLANK format, the computer,

directed by a READ statement, begins to scan a record (card),

interpreting whatever it finds as the type of variable sought by the

statement; the field ends at a comma or at the end of the record. Blanks

are usually ignored, except an entirely blank field is read as integer

zero.

For example: READ (5,9) A, B, J

9 FORMAT ()
would read

9.0 , 6.7E-1,7

or

9.0 ,6.7-1

7

6

identically, giving the values

A = 9.0, B = .67, and J = 7

The advantages of using BLANK Format are:

1. Numbers need not be carefully placed in fields

on the cards. One merely punches the numbers, separated by commas.

2. The same read and format statement can read data on one or

several cards, decided by the user at data input time. This is useful

in FNFIT.

One precaution to remember is that the end of a card acts like a comma

(unless a comma is in column 80). Hence the data

9.0 , 6.7E-1,

7

would set A = 9.0, B = .67, J 0, and

read 7 on next READ statement.

B. Program Operation

The six card sets, described in the introduction, are constructed as

follows. (Control cards (beginning with @) are for the EXEC VIII

operating system for the UNIVAC 1108).

EXEC A

The first set of cards must cause Subroutine FCN to be compiled

with the function G inserted where indicated [See Listing - Appendix A].

The exact commands depend on the file names used, etc. At the APG-EA

UNIVAC 1108 facility, this re' 4uires only an executive card,

@ADD AMUCK*FNFIT.DO-G

followed by FORTRAN statements that construct the user supplied function,

G(x; A(l), A(2), ...). For example

G = A(l) + A(2) * X ** 2 + X ** A(3)

or

G =0.

7

DO 10 1= 1, 4

10 G=A(I) *SIN (I*A(5) *X) +G

The @ADD command enters the instructions from element DO-G into the

run stream.

EXEC B

The next instructions must make an absolute element which includes

the newly compiled "'-N, and execute the program. Again, exact commands

depend on the system which in our case requires only one card -

@ADD AMUCK*FNFIT.DO-FNFIT

The program is now running. The following sets insert data for a

particular fit using the user-supplied-function.

SET A

(1) "Gab cards" - i.e. A cards which do not start with five integers

separated by commas, will be printed at the top of any output. This allows

printing the G-function or messages.

The first cards starting with five integers will be read as the

following control card.

(2) "Control card" (FORMAT ())

MXSTP, MAXIT, IPRT, ICHK, NHOLD

where

MXSTP: Maximum number of steepest gradient steps

MAXIT: Maximum number of least square iterations.

IPRT: OUTPUT control

= 0; Output only at end

= 1; Gives parameters and X2 after every step/iteration

= 3; Gives parameters, X2,,and fit to function after
every step/iteration

= 4, Acts like 3, but includes 3G/.3X

= 2; Acts like 3 if X2 has improved, otherwise like 1.

ICHK: COOLIT controlI = 1; Check parameters for limits on minima, maxima and

variation (jbe. Call COOLIT each iteration)

= 0; No check

NHOLD: Number of parameters NOT allowed to vary.

If NHOLD is not 0; then the next cards are

(3),... IHOLD(J) (FORMAT C)),
the indicies of the NHOLD parameters which are to be held fixed.
For example, if A(3) is to be a fixed value, then NHOLD = 1, and the

following card is

SET B

(1) NPARAM (FORMAT C)) -the total numbei of parameters- A(J) -

F in G(x; A(l), ...)

Then NPARAM cards, (for J = 1, 2, N'ARAM)

(2),... A(J), MAG(J) (FORMAT C))

where A(J) = initial guess for parameter J

M.• O) = "magnitude" of parameter J (i.e. the approximate

power of 10)

e.g. 1) < A(l) < 100. means MAG(l) = 2

or -0.01 < A(3) < 0.05 means MAG(3) = -2

SOption 1. If A(J) - the initial guess for a parameter - indicates the

order of magnitude of parameter (J), then inputting "S" for MAG(J) will

automatically set MAG(J) = log A(J). Clearly, to use this option,

A(J)•j .

Option 2. @EOF in place of card (1) on any search after the first,

will compute starting values, A(J), from previous magnitudes.

Eliminates need to respecify A(J)s.

9

EXAMPLE: For G = A(1) * X + A(2), input might be:

2

0.0, 1

1.OE-2, M

Subsequent fit

@EOF

SET C

If ICHK=l - set C is used.

(COOLIT CONTROL SET)

Subroutine COOLIT limits allowed parameter values

(1),... "Coolit Cards" (FORMAT ())

Jl, Ll, DUM (FORMAT ())

where

Jl: Subscript of cooled parameter

Ll: Kind of limit

= 1 - limit size of change
= 2 - limit minimum value

= 3 - limit maximum value

DUM: Value of the limit

LAST) LAST CARD MUST BE @EOF

Option: Inputting "S" for a coolit card automatically limits all

parameters to change by less than 1/2 of their "magnitude" (from SET B)

EXAMPLE:

2, 1, 0.5

6, 2, 0.0
$

@EOF

This set of COOLIT Cards

(1) Limits parameter 2 to change by less than 0.5 ii any iteration.

(2) Limits parameter 6 to values greater than or equal to 0.0.

(3) Limits all parameters to change by less than 1/2 their "magnitudet".

10

-p

SET D

1) WT - FORMAT()

where WT is the power of Y(I) by which to weigh each data pt.

(Note: WT = 0.0 means unweighed)

2), X(I), Y(I) - (FORMAT ())

These are the data points to be fit

Option: If WT = $, then the subsequent cards are

2) X(I), Y(I), W(I) - (FORMAT ())

where W(I) is the user-supplied weight for each data point.

(Note: Program normalizes Z W(I) = 1.0)

Option: If WT = @EOF, the data and weight from the previous run are used.

Option: If the first X(I),... = @EOF, the data from the previous run

are used.

LAST CARD) Following the data, the last card must be @EOF.

To end program, place (another)

@EOF

-at end of deck.

III. HOW FNFIT WORKS

For statistical reasons1, it is assumed that the function X2 is a

measure of the "poorness of a fit". X2 is given by
NDATA 2X2 = W.(I) (Y(I)-F(X(I})2

NDATA- (NPARAM-NHOLD)

=) Y()F Xl)

where the data points, NDATA in number, are the set [X(I), Y(I)],

F(x; A(l), A(2)..., A(NPARAM)) is the fitting function containing the

parameters A(J), (NP'ARAM-NHOLD) is the true number of variable parameters,

and W(I) is a factor aliuwing the data points (X(I), Y(I)) to be weighted.
NDfTA

(FNFIT causes VW(I) = 1.)

I=1

11

7 i

X2 :an u: considered as a surface in the NPARAM + I dimensional

space [X2 , A(I), A(2)...,] The best fit is the lowest point on that

surface (smallest X2), and the purpose of FNFIT is to find the NPARAM +

1 coordinates of that lowest point. To accomplish this, FNFIT uses

two search techniques

1. Steepest Gradient (< MXSTP steps)

2. X2 Minimization (SMAXIT steps)

Consider the 3-D X2 surface of Figure 1. Suppose one starts at

point I. A X2 minimization (according to Reference 1) is unstable here

(convex surface). The best approach is to find the steepest gradient

and step in that direction. However, once getting to IV, the surface

is concave and the steepest gradient search becomes inefficient and

inaccurate. Thus, having sensed that the gradient at IV was less

steep than at III, FNFIT switches to a X2 minimization. In this phase

of search, the program approximates X2 linearly, and solves the set of

NPARAM linear equations to get the values of the parameters, A(J), for

which aX2 =0.

FNFIT consists of a main program (FNFIT), 10 subroutines, and 2

executive instruction elements (DO-G and DO-FNFIT). The specific function

and operation of the more involved routines are discussed below.

FNFIT - Main Program

FNFIT serves three purposes. It acts as an executive, calling the

various operations (such as the steepest descent search); it reads all

data after the control card; and it performs the X2 minimization.

Possible confusion about the program can be reduced by distinguishing

between two groupings of the parameters. The supplied function (in FCN

via FN) is a function of X, containing parameters A(l), k(2)...A(NPARAM).

However, NHOLD of them may be excluded by the user from being changed

in value. The indicies of the excluded parameters are in an array

IHOLD(l), IHOLD(2)...IHOLD(NHOLD). Furthermore, as described in the

section on COOLIT, some parameters may be temporarily held constant

12

z0

o II
0.0

*0

0. 0

CL
E

4t4

by the program. There are NW of these, and they go into

IHOLD(IHOLD(NIIOLD + 1),...IHOLD(NHOLD + NT).) The number actually being

varied at any particular time is NV = NPARAM-NHOLD-NT. Before each

iteration the indicies of the variable parameters are assembled, in

ascending order, in the array KL(l), KL(2),...KL(NV). FNFIT uses this

array to find the indicies of the parameters involved in that particular

iteration of the X2 minimization search.

Having read the input data and having returned from GRAD (steepest

gradient search), FNFIT begins the X2 iterative loop. The steps are as

follows:

1) It checks the variable parameters, releasing one if appropriate

(as described under COOLIT) and assuring that NV > 1. If NV = 0, th,•

iteration is skipped, and one parameter is released on the following

iteration.

2) It then evaluates the fitting function - using the current

values of the parameters - at all the X(I) (data point abscissae); it

calculates X2 , and outputs as directed by the control card.

3) Next, it sets up the KL matrix, and calculates the coefficients for

the NV simultaneous linear equations

N DATA
-0. Recall0 X2 W(I)(Y(I)-F(X(I))) 2

I=1

and F(Z; A(l), A(2),...) is boing linearly approximated as

F(Z; A(l), A(2),...) = F'(Z) + (d•z) A A + * A A(2) +...
dA(l) /dA(2))

where primed qluantitics refer to evaluation at t'e most reccnt values

of A(J). Using this, the NV simultaneous equations can be written in

matrix form as

74AA

14

where

N DATA

AM WI' * di~((I))F(X(I))
AMJK W(I)dA(J))(

1=1

S~and
and IN DATA N•=•DATA I~dF(X(1))dAJ

R = W(I) (Y(I)-F'(X(I))) " (X(I)

FNFIT gets the necessary derivatives from DFN (Z). It even checks

to make sure that (dF/dA(J)) is not identically zero for some J (i.e., to

make sure that F is a function of all A(J)s).

4) FNFIT then calls LSIMEQ from the 1108 System Library, and solves

for the AA s.

5) At this point, the AA's are checked. If all are near zero (no

parameters are changing), a fit has been found, and FNFIT exits.

6) Assuming no fit yet, FNFIT goes about updating the parameters. It

first calls COOLIT to ass'-'e that no parameter is changed too much. Upon

return, the allowed changes are added to the appropriate A(J)s. COOLIT

is then recalled to assure that no parameter has exceeded its lower or

upper absolute limits.

FNFIT then returns to step 1.

Upon exit, either via step 5, or by doing the maximum number of

iterations, FNFIT restarts by looking for a new control card.

DGDK(X, J, DG) - Derivatives

DGDK takes the derivative of the function F(X; A(l), A(2)...) with

respect to A(J) at X by fitting a Sth order polynomial to F evaluated

at 5 values of A(J). For J = 0, the derivative is taken with respect

to X. The five A(J) values are A(J), A(J) + 10-6 C(J), and A(J) + 10-2

C(J), where the C(J) are the "magnitudes" of the A(J) which are user

supplied (refer to USERS MANUAL section). The big spread in the points

is an attempt to fit both functions that change rapidly and

15

functions that change slowly.

Having fit F(X; A(l), A(2)...) by a4 A(J)4 + a3 A(J)3 + a2 A(J)2 +

a1 A(J) + a0 , the derivative is given by

DF/DA(J) = 4a 4 A(J)3 + 3a 3 A(J)2 + 2a2 A(J) + a1

GRAD - Steepest Gradient Search

GRAD, like FNFIT, sets ap the array, KL(J), of variable parameter

indicies. Hence, A(J) refers to NV actually varied parameters.

The idea of GRAD is to detect the steepest gradient in the X2

surface, take a step down that gradient, and recompute. The size of

the step, STPSZ, is chosen internally as 0.4 in the non-dimensionalized

parameter space described below.

A difficulty in this kind of search is treating all parameters

equally. A step size of lOm is huge for a parameter whose range is

from -10-6 to 10i6m, is negligible for one whose value is in the

order of 10 6i, and is meaningless to one whose dimension is grams.

Therefore, GRAD converts the problem from A-space (X 2, A(l), A(2)...)
2to B-space (X , B(l). B(2)...), where B(J) = A(J)/C(J). C(J) refers,

as in DGDK, to the user supplied. "magnitudes" of the A(J). If the

C(J)s fairly well describe the magnitudes of the A(J)s, then a step

of 1 in B-space has the same relative effect on all the parameters.

Hlaving converted to B-space, GRAD proceeds as follows:

I) like FNFIT, it evaluates G and X2 and outputs as directed. GRAD
exits here a) if MXSTP steps have been taken or b) if two successive

2steps have resulted in a worse X . Upon any exit, the values of the
2A(J) are set to those that gave the smallest X

9

2) the next step is lo evaluate theaXc/iB(J).

Since
ax2 *X2 dA(J) = C(J)

OB(J FA(J) J dB(J) 5A(J)

16

- -

GRAD can evaluate ax 2IB(J) by calling DGDK and evaluating 3X /3A(J) as

does FNFIT. Also, the root-square. (aX/3B(J) 2 1 2 , is computed.

3) The step in B-space is taken by adding to each B(J) a change
2equal to -(aX /aB(J)).(STPSZ)/root-square. Since the B(J)o are orthogonal,

it is seen that this procedure takes a step in B-space of size STPSZ, with

the largest components of the step in the B(J)s having the steepest

gradient. The minus sign assures movement down the gradient.

4) GRAD now goes about checking the limits and second derivative

of the new B(J)s. First COOLIT is called to check maxima and minima (since

COOLIT works in A-space, the A array is first updated). Then, the most
recent •ax/aB(J)s are compared to the previous ax2 /DB(J~s. If any

parameter has either exceeded a COOLIT limit or found a shallower

gradient, that parameter is held fixed, and the program returns to

step 3) and recalculates the B-step. This procedure is continued

until a) an allowed step is taken, or until b) all parameters have found

a shallower gradient and GRAD exits. If a step is taken, GRAD loops

back to step 1.

COOLIT - Parameter Limiting Subroutine

As described in the USERS MANUAL, the user can input limits on the

minimum or maximum that a parameter can attain, or limit the amount a

parameter can change in any FNFIT iteration. (This latter limit keeps

the search from making wild jumps because of linear approximations to

touchy parameters.) When COOLIT is called, it checks the A(J)s, or DA(.)s,

versus their limits. If any limits are exceeded, the A(J) (or DA(.J)) is

reduced to its allowed limit. Then, the errant A(J) is placed at the

top of the list of parameters temporarily held constant (not changed in

the succeeding iterations in FNFIT or GRAD).

The list is maintained in FNFIT by these rules.

1) If any parameter was added to the list during the past iteration

* no parameter is released.

2) If no parameter was added to the list during the past iteration

then the parameter at the bottom of the list (most time on the list) is

17

released.

The result of this procedure i." to allow the program to readjust

to any "artificial" changes caused by imposing limits.

To avoid the possibility of a subtle kind of loop, the limit on

the DA(J)s is reduced as a function of the iteration. This is not a

forced convergence; it merely assures non-repetition.

IV. GENERAL CAUTIONS

SQ is a function defined on an NPARAM dimensional space. Depending

on the form of G and on the data, there may exist any number of "local"

minima, i.e., sets of values for the parameters for which any small

change in any of the parameters produces an increase in SQ. It is

assumed that the best fit, and hence the desired set of parameters.

corresponds to only onc of these local minima. The local minimum which

the program seeks out depends on the starting set of parameters. There

exists no completely satisfactory method to avoid the multiple minima

problem; it is, in fact, another aspect of the generally unresolved

problem of unambiguously defining a best fit. Two features of FNFIT

aid in best fit selection: the output subroutine displays data versus

F(X) for easy comparison by the user, and initial parameters are easily

changed to "map out" local minima.

Another phenomenon of this kind of fitting program occurs when F(X)

is a much stronger function of some parameters than others. In such a

case, some parameters are varied much less than others. The hold-

parameters-fixed and check-new-values-before-reiteration features of

FNFIT are useful aids in assuring a suitable search on all parameters.

An error to be avoided in any function fitting problem is an

attempt to use indeterminant parameters. For example, the function

A(1)*(A(2)*X+A(3)) can never be uniquely fit, since A(2) and A(3)

can compensate for any value of A(l). Such errors can be very subtle
(e.g. a variable starting point for a Fourier Se:'ies is indeterminant.)

A bad start can also fool the program into thinking that such an error

18

-AX

exists. For example, in fitting a function like A1 -A2e -3 (See section

V), a search that starts by making A1 and A2 very large might result in

values for A3 that are so small that the function is approximately

"A - A2 , and acts indeterminant. Therefore, the size of changes (Ll=l

[option on page 10) should be held to the minimum required.

* If the function does not closely fit the data, a possible symptom

of indeterminancy in FNFIT is non-convergence. If the data does fit

well, a probable sympton is the detection of a singular matrix by

Subroutine LSIMEQ. If, during the matrix reduction-inversion process,
-12the largest pivot elemaent is smaller than EPS1(10-, as listed) LSIMEQ

aborts and returns to FNFIT. FNFIT prints out the partially reduced

matrix, the indicies of the previous pivot elements, and then looks for

new data to begin a new fit.

V. A FITTING EXAMPLE

As an example of the operation of the program, twenty-five values

of X(I), (0 < X < 10.), and the corresponding values of Y(I) from the

relationship Y(I) = 1. - EXP (-X(I)) were fit with the following

functions.

A. G = A(l) + A(2) * EXP (-A(3) * X) + A(4) * EXP (AC5) * X)
4

B. G =, A(J) * SIN (J * A(S) *X)
J=]

S
C. G =L A(J) * PJ-1 (X)

J=l

where PL(X) is the Legendre polynomial

D. G = A(I) + A(2) * ALOG (A(3) * X + 1) + A(4) * ALOG (A(5)* (X**2)+ 1)

Two attempts, with different starting values and limits, were made

with case B.

The sets of cards, with running explanation of the function of each,

are included in Appendix B.

The same set of starting parameters was used in all cases

19

(A(l) thru A(4) = 1.0, A(S) = 0.02), indicating the relative insensitivity

of the search in this case to initial values. Each starting value

also served as its magnitude ($ option in Set B). The maximum change

in any iteration was limited to 1/2 magnitude ($ option in Set C).

Also, parameters A(3) and A(S) were forced to stay positive in cases

A and D, and also in case B for A(S).

The initial searches were limited to 200 iterations. However,

cases A and B had not finished (i.e. exit was by maximum iterations

rather than by non-changing values.) Case A is difficult in that A(4) =

0.0 is the exact solution; however, as A(4) approaches 0.0, A(S) becomes

indeterminant. Case B was then continued for 600 iterations and did not

improve; the search was in a very slowly damped oscillation about the

final values.

The results are plotted in Figure 2.

The values of X2 for the cases were:

A: 2.139 X 10-7

B: 6.903 X 10-3

C: 6.692 X 10-4

D: 4.931 X 10-

20

100

+

0) C"
<ix x • < E,

4, 0

x<

0

U.1.

x'4 x4 ,

!x

*04

21 .- ,

- 4.<

21

I.. -' -

_____W- -- ---

VI. REFERENCE

1. Bevington, P. R., Data Reduction and Error Analysis for the Physical
Sciences, (McGraw = Hill) 1969.

22

APPENDIX A

HEADING

SUBROUTINE HEADING(IK)
COMON/PARAM/NPARAM, A(20), SQ
INTEGER V(7)
IF(IK .GT. 0) GO TO 40
NNN = NPARAM

IF(NNN .GT. 10) NNN=10
ENCODE (S79, V) NNN

579 FORMAT C '(SHOIT' , 'ER,SX,l , 121ISQ, 1, 13, '(6X2HA' '(,12,11$,I))),)
40 WRITE C 6, V) I, I = 1, NNN)

RETURN
END

FN

SUBROUTINE FN
COMWON/FUNCT/ F(1000)
COMON/DATA/NDATA,X(1000) ,Y(1000) ,W(1000)
DOUBLE PRECISION G, T
DO 70 I=I, NDATA
T + X(I)
CALL FCN(T, 0, 0., G)

70 F(I) = G
RETURN
END

I

SUBROUTINE DFN (Z)
COINHON/PARAMI/NPARADI, A(20), SQ
COMION/ DFUNCT/ DFC20), NV, K! (20)

5 DOUBLE PRECISION T
T=Z
DO 100 K = I,
J = KL(K)
CALL DGDK(T, J, DG)

100 DF(J) = nG
"RETURN
END

COOL IT

23

SUBROUTINE COOLIT(ITER, KEY, MARK)
COMMON/ HOLD / NHOLD, IHOLD(20)
COMMON/PARAM/NPARAM, A(20), SQ
COMMON/ COOL/ NT, MAXIT, DA(20), NDAM(3), JDAM(3,20), DAM(3,20)
IF(MARK) 100

C CHECK AMINS
N2 = NDAM(2)
IF(N2) 40,40
DO 30 J2 = 1, N2
K2 = JDAI(2, J2)
IFr A(K2) .GE. DAM(2, J2)) GO TO 30
A(K2) = DAM(2, J2)
KEY = 1
IF(NT) 28,28
NI - NHOLD + 1
NN = NHOLD + NT
DO 27 KK =NI,NN

27 IF(IHOLD(KK) .EQ. K2) GO TO 30
28 NT = NT+I

IHOLD(NHOLD + NT) = K2
30 CONTINUE

C CHECK AMAXS
40 N3 = NDAM(3)

IF(N3 oEQ. 0) RETURN
DO 60 J3 = 1, N3
K3 = JDAM(3, J3)
IF(A(K3) .LE. DAM(3, J3)) GO TO 60
A(K3) = DAM(3, J3)
KEY = 1
IF(NT) 48, 48
N1 = NHOLD + 1
NN = NHOI.D + NT
DO 47 KK =N1, NN

47 IF(IHOLD(KK) .EQ. K3) GO TO 60
48 NT = NT+I

IHOLD(NHOLD + NT) = K3
60 CONTINUE

RETURN
C CHECK DA S

100 N1 = NDAM(1)
- IF(N1 .EQ. 0) RETURN

PON = FLOAT(ITER) / FLOAT(MAXIT)
DO 130 Jl = 1, N1
KI = JDAM(1, Jl)
YUK = DAM(l, J1) * EXP(- PON)
IF' ABS(DA(KI)) .LT. YUK) GO 10 130
DA(KI) = SIGN(YUK, DA(KI))
KEY= 1
IF(NT) 128,128

24

!-

'477 '447~f --tM

Nl = NHOLD + 1
NN = NHOLD + NT
DO 127 KK =Nl, NN

127 IF(IHOLD(KK) .EQ. KI) GO TO 130
128 NT - NT+1

IHOLD(NHOLD + NT) = Ki
130 CONTINUE

S~RETURN
END

GAB

SUBROUTINE GAB(MXSTP, MAXIT, IPRT, ICHK, NHOLD, K2K)
DIMENSION GAB(140)
NEW = 110 READ(5, 9, ERR=25, END=30) MXSTP, MAXIT, IPRT, ICHK, NHOLD

9 FORMAT()
IF(K2K) 5, 5
PRINT 89, (GAB(M), M = 1, K2K)

89 FORMAT('1', (T20, 13A6,A2, /))
PRINT 98

99 FORMAT(13A6, A2)
98 FORMAT(//)
S RETURN
25 CONTINUE

IF(NEW) 35, 35
K2K = 14
KIK = 1
GO TO 40

35 K1K = KIK + 14
K2K = K2K + 14

40 READ(0, 99) (GAB(M), M= KiK, K2K)
NEW = 0
GO TO 10

30 STOP
END

DO-FNFIT

@MAP,IS IT
LIB MISD*LIBRARY.
IN AMUCK*FNFIT.,TPF$.FCN
END
XQT

2S

x~'nll -~ -V-nlný'___ M

FNFIT

C FN.FIT MAIN PROGRAM
COMMON/ COOL/ NT, MAXIT, DAC2O), NDAM(3), JDAM(3,20), DAM(3,20)
COMION/DATA/NDATA,X(1000) ,Y(1000) ,W(1000)
COMMON/ DFUNCT/ DF(20), NV, KL(20)
COMMON/FUNCT/ F(1000)
CO?440N/ GRAUC /MXSTP, IPRT, NNN, ICHK
COMMON/ HOLD /NHOLD, IHOLD(20)
COMMON/ MAG /C(20)
COMMON/PARAM/NPARAM,A(20),SQ
DATA EPSI, EPS2 / 1.OE-12, 1. OE-5/
LOGICAL PIZE, POST
DIMENSION AM(22,22), IR(22), JC(22),RDA(22)
DIMENSION MAG(20)
DIMENSION ISDFO(20)
K2K = 0

3 CALL GAB(MXSTP, MAXIT, lRT, ICHK, NHOLD, K2K)
IF(NHOLD) 4,4
READ (5 , 9)(IHOILD(K), K =1, NHOLD)

4 CONTINUE
READ(5, 9, ERR =7777, END = 211) NNNN
NPARAM = NNNN
DO 17 J = 1, NPARAM
READ(5, 9, ERR = 18)A(J), MAG(J)
C(J = lO.**MAG(J)
GO TO 17

18 C(J) = A!,S(A(J))
17 CONTINUE
21 CONTINUE

DO 11 I = 1,3
11 NDAI(I) = 0

PRE = FALSE.
POST F .ALSE.
IF(ICHK S ,5
DO is J 1, 60
READ(5, 9, ERR=8888, END=15)J1, Li, DUM

NDAM(LI) =N[jAM(LI) +~ 1
Ni = NDAIM(Ll)
JDAM(TA, Ni) =Ji

DAMI(LI, Ni) =DUM

GO TO 13
C IF COOLIT CARD IS $,*, ETC., ALL PARAMETER CHANGES ARE LIMITED
C TO 0.5*MAGNITUDE OF THE PARAMETER

8888 DO 14 J2= 1, NPARAM
NDAM(1) = NDAM(1) +
Ni = NDAM(l)
JDAM(1, NI)= J2

DAM(1, Ni) *C(J2)

26

14 CONTINUE
14 CONTINUE
15 IF(3NDAM(!) G. 0) PRE = CTRUE.

IF((NDAIY(2) .GT. 0) .OR. (NDAM(3) .GT. 0)) POST = .TRUE.
5 CONTINUE
9 FORMAT()S~CALL DATAIN

C SET UP DGDK

CALL DGDK(0.0, -1, 0.0)S~r

C PRINT HEADING INFO
IF (NHOLD .EQ. 0) GO TO 48
PRINT 249, (IHOLD(L), L = 1, NHOLD)

48 CONTINUE
PRINT 609
IF(NDAM(1)) 620, 620
NDAMI = NDAM(1)
PRINT 619, (JDAM(I,K), DAM(I,K), K 1, NDAM1)

620 IF(NDAM(2)) 630, 630
NDAM1 = NDAM(2)
PRINT 629, (JDAM(2,K), DAM(2,K), K = 1, NDAM1)

630 IF(NDAM(3)) 640, 640
NDAMI = NDAM(3)
PRINT 639, (JDAM(3,K), DAM(3,K), K = NDAM1)

640 CONTINUE
249 FORMAT C 29HOPARAMETERS HELD CONSTANT... , 20(14, IH,))
609 FORMAT 1 '01)
619 FORMAT (' CHANGE LIMITED FOR PARAMETERS ...

$ 4(T37, S(14, ' (', 1PE9.2, '),') /))
629 FORMAT (' MINIMUM LIMITED FOR PARAMETERS ...

$ 4(T37, 5(14, 1 (1, 1PE9.2, I),') /))
639 FORMAT (I MAXIMUM LIMITED FOR PARAMETERS ...

$ 4(T37, Sc 14, ' (', 1PE9.2, '),') /))
C
C CALL GRADIENT SEARCH

NNN = NDATA + NHOLD - NPARAM
IF(MXSTP) 40, 40
CALL GRAD

40 PRINT 299
299 FORMAT (/ f CHISQ MINIMIZATION SEARCH

CALL HEADING(MXSTP)
KEY = 0
NT= 0

C
C THE ITERATIVE LOOP STARTS HERE
C

ITER = 0
NI = NHOLD + 1

1002 CONTINUE

27

C
CALL FN

C FN FILLS F(I) AT ALL INPUT POINTSS~C
C NOW CALCULATE SQ

SQ = 0.0
DO 20 I - I, NDATA

20 SQ = SQ + W(I)*(Y(I) - F(I))**2 / NNNS~C
C OUTPUT VARIABLES FROM PREVIOUS ITERATION

CALL OUTPUT(ITER, IPRT)

C

C IF NO NEW PARAMETER IS BEING HELD THIS ITER., REMOVE THE OLDEST
IF((KEY .NE. 0) .OR. (NT .EQ. 0)) GO TO 140
NT NT - 1

C
NAIl = NHOLD + NT
DO 135 KK = Ni, NAIl

135 IHOLD(KK) = IHOLD(KK+1)
140 CONTINUE

NAH = NHOLD + NT
NV =NPARAM - NAH

C
C MAKE SURE THAT SOME PARAMETER IS ALLOWED TO VARY

IF(NV) 195,19S,200
195 ITER = ITER + 1

PRINT 199, ITER
199 FORMAT(1X, 13, 1 ALL VARIABLES HELD)

KEY = 0
GO TO 1001

200 CONTINUE
C

IF (ITER .EQ. MAXIT) GO TO 1010
C
C NOW SET UP ARRAY, Kl, OF VARIABLE PARAMETER INDICES, IN NUMERICAL
C ORDER

K=1
DO 210 II = 1,NPAR.AM
IF(NAIl .EQ. 0) GO TO 215
DO 220 JJ = INAH

220 IF(IIIOLD(JJ) .EQ. II) GO TO 210
215 KL(K) = II

K = K+l
210 CONTINUE

C
C SET UP NV X NV+÷ MATRIX OF COEF. , ONE DATA POINT AT A TIME

NV1 = NV+1
DO 50 I1 = 1,NV
ISDFO(I1) = 0

28

W7 --;' _ ___ - -7 ' ---- - -

NM Ur -vp----~ --

DO 50 12 = 1, NV1
50 AM(I1,12) = 0.

DO 100 I = 1,NDATA
CALL DFN(X(I))

C INTO / DEFUNCT/ APPEARETH (DF(KLJ)) , J = 1,NV) EVALUATED AT X(I)
DO 80 K1 = 1,NV
k = KL(Kl)

C
C CHECK IF DF(SOME VARIABLE) IS I.D. = 0

IF(ABS(DF(K)) .LT. EPSI) ISDFO(K1) = ISDFO(K1) + 1
C
C FILL UP COEFICIENT MATTRIX FOR DA

AM(K1, NV1) = AM(Kl, NV1) + W(I)*C Y(I) - F(I))*DF(K)
DO 60 K2 =1,NV
L = KL(K2)
AM(K1,K2) = AM(K1,K2) + W(I)*DF(K)*DF(L)

60 CONTINUE
80 CONTINUE
100 CONTINUE
C
C FINISH CHECK FOR DF I.D. = 0 AND REDUCE MATRICES OF VARIABLES
C ACCORDINGLY

NVQ = NV
DO 300 K= 1, NVQ
IF(ISDFO(K) ,NE. NDATA) GO TO 300
PRINT 599, KL(K), KL(K)

599 FORMAT(' DF/DA(', 12, ') IS I.D. = 0 NEXT ITER. A(', I ') WI
$LL BE HELD. ')

NV1= NV
NV =NV-1
IF(NV) 195, 195
DO 340 Li " K, NV
KL(LI) = KL(L1+l)
DO 340 L2 =1, NV1

340 AM(L, L2) = AM(L1+1, L2)
DO 350 L2 =K, NV1
DO 350 L1= 1, NV

350 AM,(Li, L2) =AM(Li, L2+1)
300 CONTINUE

C
C NOW FIND SOLN TO DA(20)

CALL LSIMEQ (AM, 22, IR, JC, NV, EPS1,RDA, IERRI)
IF(IERR1 .EQ. -1) GO TO 7734
DO 102 J = 1, NPARAM

102 DA(J) = 0.0
DO 108 KI = 1, Nv
K2 = KL(KI)

108 DA(K2) = RDA(K1)
C
C QUIT IF NO PARAMETERS ARE CHANGING OR ALL ARE ZERO

IF(CITER .LT. 4) .OR. (:T .GT.0)) GO TO 106

29

DO 105 J = 1, NPARAM
IF(ABS(A(J)) .LT. EPSI) GO TO 105
IF(ABS(DA(J)/A(J)) .GT. EPS2) GO TO 106

105 CONTINUE
GO TO 1010

106 CONTINUE
KEY = 0

C
C IF ANY PARAMETER CHANGE IS LIMITED, CALL COOLIT

IF(PRE) CALL COOLIT(ITER, KEY, -1)
C
C NOW ADD THE DA S TO THE PROPER A S

110 DO 120 J = 1, NPARAM
120 A(J) = A(J) + DA(J)

C
C IF ANY PARAMETER IS LIMITED, CALL COOLIT

IF(POST) CALL COOLIT(ITER, KEY, 1)
1000 CONTINUE

ITER = ITER + 1
IF(ITER .LE. MAXIT) GO TO 1002

C
C THE ITERATIVE LOOP ENDS HERE.
C

1010 CALL OUTPUT(ITER,4)
GO TO 3

7734 PRINT 689,
689 FORMAT (' LARGEST ELEMENT .LT. EPS1 IN LSIMEQ ')

DO 701 I = 1,NV
PRINT 9, (AM(I),J), J = 1, NV1)

701 CONTINUE
PRINT 797

797 FORMAT (VARIABLES THIS ITERATION ')
PRINT 799, (KL(J), J = 1, NV)
PRINT 798

798 FORNIAT(t OINDETERMINATE**** PROBLEM MIGHT BE...',/,
$ T20, '1) PARAIETERS ARE NOT INDEPENDENT',/,
$ T20, :2) NUMBER PARAMETERS + 1 .GE. NUMBER DATA POINTS', /,
$ T20, '3) DATA NOT IN RIGHT RANGE TO DETERMINE ONE PARAMETER')

C
799 FORMAT (/ lX20IS)

GO TO 1010
211 DO 212 J = 1, NPARAM
212 A(J) = C(J)

GO TO 21
7777 PRINT 9999
9999 FORMAT(' MESS-UP IN MAIN PROGRAM READ ')

STOP
END

30

7 MM-

DO-G
@FOR,S AIUCK*FNFIT.FCN,TPF$,FCN

-8

L. DATAIN

SUBROUTINE DATAIN
COMMON/DATA/NDATAX(1000) ,Y(1000) ,W(1000)
COMMON/ XTREME/ DELY1O, DELXIO
READ(5, 9, ERR=40, END-25) WT
AWT = ABS(WT)
DO 20 1 = 1, 1000
READ(S, 9, ERR = 7734, END = 33) XX, YY
X(I) = XX
YCI) = YY
W(I) = 1.0
NDATA = I

20 CONTINUE
33 CONTINUE

IF(AWT .LT. 1.OE-8) GO TO 52
DO 50 I = 1, NDATA
T = ABS(Y(I))
IF(T .LT. 1.OE-12) GO TO SO
W(I) = T**WT

50 CONTINUE
52 CONTINUE

XMIN = X(1)
XMAX = X(1)
WORM = 0.0
DO 60 I = 1, NDATA
WORM = WORN + W(I)
XMIN = AMINI(XMIN, X(I))
XMAX = AMAXI(XMAX, X(I))

60 CONTINUE
DELX1O = (XMAX - XMIN) / (10. * NDATA)
DO 30 I = 1, NDATA

30 W(I) = NDATA*W(I)/ WORM
25 RETURN
7734 PRINT 69

STOP
9 FORMAT()
69 FORMAT(' MESS-UP IN DATAIN READ ')
40 CONTINUE

DO 45 1= 1, 1000
READ(5, 9, ERR = 7734, END = 52) X(I) , Y(I) , W(I)
NDATA = I

45 CONTINUE
GO TO 7734
END

31

DGDK

SUBROUTINE DGDK(T, KS, DG)
COMMON/PARAM/NPARAH,A(20) ,SQ
COMMON/ XTREME/ DELY10 DELX1O
COMMON/ MAG / C(20)
DIMENSION SGN(2)/ -1., 1. /
DOUBLE PRECISION G, T, DEL
DOUBLE PRECISION P(2), Q(3), DT(21,3), D2(21,3), DNOM(21)
DOUBLE PRECISION D5(21,3)
IF(K5) 30, 40, 40

30 DT(1,) = DELX1O
DO 32 J = 1, NPARAM

32 DT(J+l, 1) = 0.01*C(J)
NP1 = NPARAM + 1
DO 34 N = 1, NP1
DT(N,2) = DT(N,1)*1.0E-4
DO 36 II = 1,2
D2(N,II) = DT(N,II)**2
D3(N,II) = DT(N,II)**3

36 CONTINUE
DNOM(N) = 0.5/ C DT(N,1)*DT(N,?)*(D2(N,2) - D2(N,l.))

34 CONTINUE
RETURN

40 CONTINUE
N = KS +1
DO 20 L = 1,2
DO 10 K = 1,2
DEL = DT(NL)*SGN(K)
CALL FCN(T, KS, DEL, G)

10 P(K) = G
20 Q(L) = P(2) - P(1)

DG = (Q(1)*D3(N,2) - Q(2)*D3(N,1)) * DNOM(N)
RETURN
END

OUTPUT

SUBROUTINE OUTPUT(ITERKKEY)
COMMON/PARAM/NPARAP,,A(20) ,SQ
COM ON/FUNCT/F(1000)
COM4ON/DATA/NDATA,X(1000),Y(1000) ,W(1000)
DOUBLE PRECISION T
DIMENSION DD(1000), BEST(20)
LOGICAL YEP
YEP = .TRUE.
IF(KKEY) 15,15

32

IF(KKEY .NE. 4) GO TO 18
rv PRINT 695

695 FORMAT(///, lOX, 'BEST FIT' /)
SQ = SOFAR
ITER - IBEST
DO 20 J = 1, NPARAM
A(J) = BEST(J)

20 CONTINUE
CALL FN
DO 25 I = 1, NDATA
T = X(I)
CALL DGDK(T, 0, D)
DD(I) = D

25 CONTINUE
18 CONTINUE

IF(NPARAM .GT. 10) GO TO 30

PRINT 499, ITER, SQ, (A(I), I = 1, NPARAM)
35 CONTINUE
499 FORMAT (1X, 13, 1X, l1(1PE11.3))
15 IF((ITER .EQ. 0) .OR. (SQ .LT. SOFAR)) GO TO 12

16 CONTINUE
IF(KKEY .LE. 1) RETURN
IF(KvEY .GE. 3) GO TO 6
IF(YE?) RETURN

6 PRINT 598
598 FORMAT(/,54X,'I',5X,'X(I)', 8X, 'Y(I)', 8X, 'F(I)', 8X, 'W(I)'

IF(KKEY .NE. 4) GO TO 8
PRINT 698

698 FORMAT (1+' , T107, 'DF/DX(I)')
8 PRINT 697
697 FORMAT(//)

IF(KKEY .EQ. 4) CC TO 9
PRINT 599, C I, X(I), Y(I), F(I), W(I), I = 1, NDATA)

599 FORMAT (/ , 1000(SOX,14,4(2XlPE1O.4) /))
GO TO 7

9 CONTINUE
PRINT 699, (I, X(I), Y(I), F(I), W(I), DD(I), I = 1,NDATA)

699 FORMAT (/ , 1000(50X,I4,5(2XlPElO.4) /))
7 CONTINUE

RETURN
12 SOFAR = SQ

IBEST = ITER
DO 14 J = 1, NPARAM
BEST(J) = A(J)

14 CONTINUE
YEP = .FALSE.
GO TO 16

30 CONTINUE
PRINT 499, ITER, Sq, (A(I), I = 1,10)
PRINT 799, (A(l), I = 11, NPARAM)

799 FORMAT(TIS, 10(1PE11.3))
GO TO 35
END

33

FON•

SUBROUTINE FCN(X, KS,TDA, G)
C•4MON/PARAM/NPARAM, A(20), SQ
DOUBLE PRECISION G, X . TDA
IF(KS EQ. 0) X = X +TDA
IF(KS .GT. 0) A(KS) = A(KS) +TDA
CONTINUE

C INSERT FUNCTION (G = FUNCTION(X, A(1),A(2),...) HERE BETWEEN
C THE CONTINUES

CONTINUE
IF(KS .EQ. 0) X = X - TDA
IF(KS .GT. 0) A(KS) = A(KS) - TDA
RETURN
END

GRAD

SUBROUTINE GRAD
COMON/DATA/NDATA,X(1000) ,Y(1000) ,W(1000)
rotMt4ON/ COOL/ NT, MAXIT, DA(20), NDAM(3), JDAM(3,20), DAM(3,20)
COM40N/ DFUNCT/ DF(20), NV, KL(20)
COMMON/FUNCT/ F(1000)
COMMON/ GRADC / MXSTP, IPRT, NNN, ICHK
COIMON/ HOLD / NHOLD, IHOLD(20)
CONMON/PAAM/NPARAM,A(20),SQ
COMMON/ MAG / C(20)
DATA STPSZ / 0.4 /
DIMENSION B(20), D(20), DXDB(20), DXDB1(20), ISG(20)
LOrICAL L1, L2, L3

C
C SET UP ARRAY, KL, OF VARIABLE PARAMETER INDICES

NV = NPARAM - NHOLD
K=1
DO 100 J1 = 1, NPARAM
DXDB1(J]) = 0.0
ISG(J1) = 1
IF(NHOLD) 90, 90
DO 80 J2 = 1, NHOLD

80 IF(IHOLD(J2) .EQ. J1) GO TO 100
90 KL(K) = J1

K= K+ 1
100 CONTINUE
110 CONTINUE

NHOLD1 = NHOLD + 1
C
C SET UP ARRAY, B(J), OF DIMENSIONLESS PARAMETERS

34

DO 150 J = 1, NPARAM
B(J) = A(J) / C(J)

150 CONTINUE

PRINT 299
299 FORMAT [/ ' STEEPEST DESCENT SEARCH ' /)

CALL HEADNG(0)
Mf = MXSTP + 1
LI = ,TRUE.
L3 ,FALSE.

C THE ITERATIVE LOOP STARTS HERE
s C

DO 1000 ISTP = 1, 14N
ITER = ISTP- 1

& NT=O
NF = NHOLD
DO 41 J = NHOLD1, NPARAM

41 IHOLD(J) = 0
CALL FN
SQ = 0.
DO 20 I = 1, NDATA

20 SQ = SQ + W(I)*(Y(I) - FCI))**2 / NNN
C

CALL OUTPUT(ITER, IPRT)
C

IF(SQ .LT. SOFAR) Li = .TRUE.
IF(,NOT. Li) GO TO 56
SOFAR = SQ
DO 50 J = 1, NPARAM

50 D(J) = A(J)
GO TO 560

56 CONTINUE
DO SSO J = 1, NPARAM
IF(ISG(J) ,EQ. -1) GO TO SSS

550 CONTINUE
GO TO 560

555 PRINT 399
399 FORMAT(t CHI-SQ INCREASED AND GRADIENT CHANGED SIGN. IF NO FINAL

$ FIT, CHECK USER SPECIFIED MAGNITUDES. ')
560 CONTINUE

IF(L3) GO TO 21
IF(Li .OR. L2) GO TO 25

21 CONTINUE
DO 35 J = 1, NPARAM

35 A(J) = D(J)
RETURN

25 CONTINUE
IF(ISTP .EQ. 4) RETURN
L2 = Li
Li = .FALSE.

3S

C
C FIND THE PARTIAL DERIVATIVES OF CHISQ W.R.T. THE B(J) S

DO 30 J =1, NPARAM
30 DXDB(J) = 0.

DO 400 I = 1, NDATA
C DFN FILLS DF(I'

CALL DFN(X(I))
DO 300 K1 = 1, NV
K2 = KL(K1)

300 DXDB(K2) = DXDB(K2) + W(I)*DF(K2)*C(K2)*(F(I) - Y(I))
400 CONTINUE
401 CONTINUE

DXB = 0.
DO 500 K1 = 1, NV
K2 = KL(Kl)
DDD = DXDB(K2)*DXDB1(K2)
ISG(K2) = ISIGN(1, DDD)
IF(ABS(DDD) ALT. I.OE-24) ISG(K2) = I

500 DXB = DXB + DXDB(K2)**2
DXB = SQRTCDXB)

C
C NOW GET NEW COEFICIENTS

DO 800 K1 = 1, NV
K2 = KL(KI)
B(K2) = B(K2) - DXDB(K2) * STPSZ / DXB

800 CONTINUE
DO 40 J = 1, NPARAM
A(J) = B(J)*C(J)

40 CONTINUE
KEY = 0

C
C HOLD ANY PARAMETER THAT EXCEEDS ITS 'COOLIT? LIMITS, OR WHO IS
C f IN THE VALLEY I (I.E. WHOSE DXDB HAS DECREASED)

"IF(ICHK) 501, 501
CALL COOLIT(ITER, KEY, 1)

501 NF = NHOLD + NT
DO 505 K1 = 1, NV
K2 = KL(K1)
DO 502 Ml = NHOLD1, NF

502 IF(IHOLD(M1) .EQ. K2) GO TO 505
IF(ABS(DXDB(K2)) .GE. ABS(DXDB1(K2))) GO TO 504
NT= NT + 1
KEY = I
IHOLD(NHOLD + NT) = K2
GO TO 505

"504 CONTINUE
DXDB1(K2) = DXDB(K2)

505 CONTINUE
IF(KEY oEQ. 0) GO TO 1000
NF = NHOLD + NT

36

IF(NPARAM - NF) 60, 60
DO 42 J = NHOLDI, NF
K = IHOLD(J)
B(K) = A(K)/C(K)

42 DXDB(K) = 0.
GO TO 401

60 L3 = .TRUE.
1000 CONTINUE

RETURN
END

37

APPENDIX B

The following cards do case A, and case B twice, as described

in the main text.

@ASG,A AMUCK * FNFIT.

@ADD AMUCK * FNFIT.DO-G

G=A(l) + A(2)*EXP(-A(3)*X) + A(4)*EXP(A(S)*X)

@ADD AMUCK * FNFIT.DO-FNFIT

G=A(l) + A(2)*EXP(-A(3)*X) + A(4)*EXP(A(S)*X) - "GAB" Card

100, 200, 1, 1, 0 - Control

5 - NPARAM
I 1.0, $

1.0, $ - initia,

1.0, $ values and

1.0, $ "magnitudes"

2.OE-2, 1

$ - COOLIT Option

3, 2, I.OE-3 - Limit A(3)&A(S)

5, 2, 1.0E-3 Greater than 10-3

(PEOF - Ends COOLIT Data

0.0 - WT (0.0 means

0.0, 0.0 unweighted)

0.1, 9.516E-2

0.2, 1.826E-1 - Data (X(I), Y(I))

0.3, 2.591SE-1

etc.

@EOF - Ends Data

@EOF - Ends Program

NOTE: Must end program bec-use new case requires new absolute element

to be compiled.

@ADD AMUCK * FNFIT.DO-G

G=0.0

DO 10 J = 1, 4

10 G = G + A(J) * SIN (J*A(5)*X)

@ADD AMUCK * FNFIT.DO-FNFIT

9 Preceding page blank

THIS IS A FOUR SINE FIT - "GAB"

G = SUM (A(J).SIN(A(5).J.X)) Cards

100, 200, 1, 1, 0 - Control

S ';)ARAM

1.0, $

1.0, $- initial

1.0, $ values

1.0, $ and

0.02, $ magnitudes
$ COOLIT Option

5, 1, 0.005 A(S) - Small Change

5, 2, 0.001 A(S) > 10"3

@EOF End COOLIT Data

0.0 - WT

0.0, 0.0

0.1, 9.516E-2 - DATA

etc.

@EOF

100, 400, 1, 1, 0 - Control for

second run

$ - Instead of NPARAM

Repeats w/old "MAGS"1

$ COOLIT Data

5, 1, 0.005

5, 2, %.001

@EOF

$ Footnote instead of weight

0.0, 0.0, 1.0 read in weights

0.1, 9.516E-2, 1.1

0.2, 1.826E-1, 1.3 XCI), Y(I), W(I)
etc.

@EOF

@EOF End Program

40

- : •, : •, :.• • o :- • - - - - -. -,- -- -• . . • .. . | ,• • • •... ••• • .•.= •_

RA- . 4 -RI

Footnote: If this card had been

@EOF

the remaining cards up to the final @EOF would be eliminated, and the

previous values for the data would be used.

I

41

'gu im

GLOSSARY OF INPUT TERMS

A(l), A(2), ... Starting values for the parameters

DA(l)... Change in a parameter in an iteration

DUM Actual Value of a COOLIT limit

G User supplied function

ICHK COOLIT indicator

IHOLD(i), IHOLD(2)... Indicies of parahi-ters held constant

IPRT OUTPUT indicator

Ji Index of parameter to be cooled

Ll Type of COOLIT limit

MAG Magnitude (power of 10) of a parameter

MAXIT Maximum number of FNFIT iterations

MXSTP Maximum number of GRAD steps

NHOLD Number of parameters held constant

NPARA•I Total number of parameters

W(l), W(2)... Weights for data points, if input by user

WT Power of Y(I) to weight data points, if computed
by program

X(I) DATA to be fit

Preceding page blank

43

